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Abstract. Using a plasmon exchange model. analytic expressions for the effective interaction 
between charge carriers in a multilayered system containing one, two. three and four 
conducting layers per unit cell has been calculated. The interaction is mediated by one 
pseudo-optical plasmon band and L - 1 proper narrow acoustic plasmon bands where L is 
the number of layers per cell. It is found that the pseudo-optical plasmon band has a proper 
optical (high energy) limit, equivalent to bulk plasmon modes, as well as an acoustic (low 
energy) limit. I n  the following paper we show that this interaction can lead to super- 
conductivity in the high-T. superconductors. 

1. Introduction 

In recent years there has been considerable interest on superlattices because of their 
potential applications in solid state devices [l-31. Two types of superlattices have been 
identified. A type-I superlattice is a periodic array of quasi-two dimensional electron 
gas [4], whereas a type-I1 superlattice is that with a basis (two conducting layers per unit 
cell) as can be found in such physical systems as InAs-GaSb. The physical properties of 
type-I superlattices have been studied by several authors [4-7]. The energy loss of a fast 
charged particle in a type-I1 superlattice has been studied by Gumbs [8] and its light 
scattering properties has been studied by Tzoar and Zhang [9] .  With the advent of the 
high-?; superconductors a type-I11 superlattice having three conducting CuO layers per 
unit cell has been identified in the Th- and Bi-based cuprate superconductors [lo, 111. 

In this paper. we calculate the effective interaction between two charge carriers in a 
metallic multilayered system based on a two-dimensional plasmon exchange model. 
Using the RPA approximation we develop the intra-layer pairing interaction between 
two charge carriers as a result of intra- and inter-layer plasmon exchanges. We have 
achieved exact results for the infinite periodic systems with one and two layers per unit 
cell. We have also been able to calculate the approximate expressions for the effective 
interaction for the three- and four-layer periodic systems. Results obtained in this paper 
should be useful in studying the many-body effects on various electronic properties of 
varioustypesofsuperlattices. For example,our theorycaneasily beused tocalculate the 
plasmon contribution tootheroptical andscattering properties [ 121 ofsuchsuperlattices. 
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These results were used in a first approach to the study of superconductivity in these TI- 
and Bi-based compounds [ 131. 

This paper is divided into several sections. Section 2 contains a description of the 
model that we have used to obtain the effective interaction between two charge carriers 
in a superlattice. We include the plasmon exchanges which may occur inside the same 
layer (intra-layer), or between the layers of the same unit cell (intra-cell), and also 
between the layers of different cells (inter-cell). In section 3 exact analytic expressions 
for the effective interaction are obtained for the infinite periodic system with one and 
two conducting layers per unit cell. Section 4 provides an approximate treatment of the 
inter-cell plasmon exchanges for infinite periodic samples with one-, two-, three- and 
four-layers per unit cell and is thus an extension of section 3. Our calculation gives 
analytic expressions for the effective interaction which is found to be mediated by one 
pseudo-optical plasmon band (bounded by a proper optical (high energy) as well as an 
acoustic (low energy) limit) and (L - 1) narrow acoustic bands. Conclusions are drawn 
in section S. 
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2. The model 

We assume that the metallic layers in the multilayered system can be considered as :D 
eIectrongases(m~~s) and that all theselayers have thesamedensityn,ofcharge carriers 
(electrons or holes) in every layer. These charge carriers (henceforth to be designated 
as 'electrons') interact with each other within the same layer, as well as from layer to 
layer via an effective Coulomb interaction which will be treated, in this paper. in the 
framcwork of the random phase approximation (RPA). The locations of the various 
layers will be given by their ordinates z, which will be specified below for various 
situations. 

The Coulombinteraction between twoelectronslocated in layersofordinates zoand 
I is given by 

where 9 represents a ?D wavevector parallel to the layers and where 

When both charge carriers are in the same layer, U reduces to uo. Since the electrons 
constitute a many-body system, their Coulomb interaction can be replaced by a fre- 
quency dependent effective interaction 
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where n(q, w )  is the RPA irreducible polarization propagator in a ZDEG. In the plasmon 
region of the (q,  w )  plane, one has 

n(q. w )  = - n,q2/niwz (4) 
for small q. Note that in (4) higher order termsof relative ordera,q have been neglected 
(ae being the Bohr radius). Using (1) let us write (3) in the form 

x 

v q ,  z - zo.  w )  = X c,(q, z - z 0 ) [  - oo(q)n(q. 4 1 '  (5) 
s = o  

with the geometric factors C, given by 

with zE+, = z. 
In this paper we calculate the interaction between electrons within the same layer 

which means that we only consider V(q,  w )  = V(q,  0, U).  In the following sections, 
several different cases of layer distributions will be considered. 

3. Periodic systems of layers 

Let us consider the general system of an infinite crystal with a periodic distribution of 
layers of ZDEGS. This, in fact, is the actual situation met in several superconductors such 
asT1,Ba2Ca,-,Cu,0Z,+,orBi,Sr,Ca,- ,CuLOz,+,where one hasaperiodicdistribution 
of CuO layers. In this section we assume that the electrons of all the ZDEGS of the 
crystal contribute to potential (5). Such a treatment can be performed exactly and is 
straightforward for L = 1 and L = 2, where L stands for the number of layers per unit 
cell. 

3.1. Single layer system (L = 1) 
Here we consider a system with only one spacing c between the conducting layers and 
write z, = n,c (cis the lattice constant and n, is an integer). The geometric factor C, can 
be calculated in terms of the Fourier transform of 

e-lAzlq = e-lA4c4 = I /zn (7) 

which is 

Introducing (7) in (6),  we obtain 
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and ( 5 )  takes the form 
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or, using (2), (4) and (S), 

with the following definitions 

S, = sinh c9 

A = cosh c9 - p-i sinh c9 

and 

p = - (eon)-' = mw2/2ne2n,q. (12) 
The subscript 1 in (9) and (IO) means that the present system has an infinite number 

of equally separated single conducting layers. Note that (10) can be integrated exactly, 
giving 

Vi(9,  W )  = UOS,(A: - l)-”’[@(Ai - 1) - @(-Ai - l)] (13) 
where 0 represents the usual step function. However, in view of the subsequent analysis 
of the present paper, we will maintain the non-integrated form (lo), which we rewrite 
in the ‘standard form’ as 

with 
P(K) =RK) = (sinh cq)/(cosh c9 - cos K) 

and W(K) = [ f ( ~ ) ] ~ .  
The following property off&) 

has been used in calculating (14). Here and below, expressions like (14) will be called 
the ‘standard form’ of V ,  with B = B(K) giving the dispersion relation for the plasmon 
mode. Suchasystemwasfirstconsideredby DasSarmaand Quinn[7]andtheyobtained 
a similar dispersion relation. 

3.2.  Double-layer system ( L  = 2) 

We now consider a system composed of ~ D E G ’ S  alternately spaced by the distances a and 
c - a, with a < c - a. Thus, two successive layers separated by the small distance a can 
beconsideredto bein aunit cell (double layer) which repeat sitself withlattice constant c. 

For this double-layer system the geometrical factor C,, given by (6 ) ,  is described in 
terms of three different factors. The first one is as before e-lhnicq with its Fourier 
transformf(~) given by (8). However, here this factor describes only the conncction 
between two lower or two upper layers. The connection between a lower (upper) and 
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Figure 1. Diagrammatic representation of a term of E2 as given by (21). 

an upper (lower) layer either within the same cell (An = 0) or in two different cells 
(An # 0) requires the new fac torsg+(~)[g- (~) ]  given by 

with 

-Anc - a for An 0 

for An < 0 

for An > 0 

for An S 0 

Anc + a 

-Anc + a 
Anc - a 

v +  = {  

v -  =(  
which, when the summation is performed, becomes 

gl(K) = [sinh(c-a)q+e""sinhaq]/(coshcq   cos^). (18) 
The corresponding interaction potential can be expressed as 

a form similar to (9) where the subscript 2 implies that we are considering an infinite 
number of cells each containing two ZDEGs. 

To simplify the diagrammatic analysis of E2, let us introduce 

F = f(K)/P and Gz = g i ( K ) I B ,  (20) 

Then, E2 appears as a sum over all possible products of Fand GL factors. Figure 1 shows 
a termof that sumina reduced scheme representation where the lower (upper) horizontal 
line corresponds to the set of all lower (upper) ZDEGs. Since V 2  is the interaction between 
two electrons in the same layer, the interaction line must start and end at the same layer 
(this corresponds to taking z = zOas was done in deriving (9)). This also means that each 
diagram of E2 must have equal numbers of G, and G- factors, the lowest order term 
being F. Hence E2 takes the form 

with summations over A and p running from 0 to a. Note the presence of a 'tail' factor 
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XF'afterthe brackets,asshowninfigure 1,andofaterm -1 whichisrequired tocancel 
the spurious zeroth order term included in the summation in (21) (for p = 0). Carrying 
out the summation in (21), we obtain 

S M Bose and P Longe 

E2 = [I - F)/[(1 - F)' - G+G-]  - 1 (22) 
and, substituting (22) into (19), we can express V 2  as 

s2 - .  

A2 - COS K 

an expression similar to (IO), where Sz and A2 are given by 

Sz = sinh cq - ( 2 / P )  sinh aq sinh(c - a)q 

A2 =cosh cq - (2 /P)  sinh cq + (2 /P2)  sinh aq sinh(c - a)q.  

Equation (13), with the subscript 1 replaced by 2, is also applicable to V2. In fact, we 
can check that all the above results for Vz reduce to those for V I ,  if we let c = 2a (and 
then replace a by c) .  

Note that by appropriate manipulation of (23), we can rewrite it in the 'standard' 
form as 

(24) 

3.3. Triple and quadruple layer systems ( L  = 3 and 4)  

At this point, it would be useful to develop similar expressions for V 3  and V,, the 
interaction potentials with three and four ZDEGS per unit cell. V 3  and V ,  can also be 
expressed in the form of (19) with Ez replaced by E ,  and Ed,  respectively. Calculation 
of E3 and E4 will involve not only factors F and G, given in (20), but also two extra 
factors 

H ,  = h, /B  and K f  = k + / @  (26) 
corresponding to inter-layer interactions between the second and third neighbouring 
layers, respectively. Note that K ,  is non-zero only for a four-layer system. As in (21),  
these factors are then needed to be renormalized by 

X, = H 2 / ( I  - F )  and ?I, = K = / ( I  - F) 
where 1/( 1 - F) stands for the series&FA, Exact calculations of these factors and hence 
of E ,  and E, are algebraically complicated and are not necessary for our purposes. 
Instead, in the next section we will derive the results after making an approximation. 

4. Approximate effective interaction 

The calculation of the approximate effective interaction is facilitated by the exact results 
of the effective interaction in an isolated cell containing one to four layers of 2DEGs. 
These results are given in Appendix A. Our approximation consists of simplifying the 
distances between layers belonging to different unit cells (inter-cell distances). We 
assume that the inter-layer distance a is small within all the cells. except for the one in 
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which the potential is being calculated. This means that the interaction factor gt(K) 
given by (17) can be simplified by replacing the exponents v? by 

for AnZO r-h””“ for An = 0 
v i  = 

whence we get g+(K) = g-(K) = g ( K )  as 

g ( K )  = Y - 1 +f(K) (27) 
which replaces (18) and where y = eq. 

Similar simplifications can be made for factors ~ J K )  and k + ( ~ )  connecting layers 
which are second and third neighbours. It is straightforward to show that we will obtain 

g ( K )  = C , ( K )  h ( K )  = C z ( K )  and k ( K )  = CI(K)  

with 

C n ( K )  = y” - 1 + f(K) (28) 
and, of course, c~ (K)  f ( ~ ) .  Again subscripts + or - can be dropped in h ( ~ )  and k ( ~ ) .  
This is the essential point in our approximation and this enables us to utilize the 
formulation of Appendix A with the proviso that expressions (Al) and (A2) are to be 
replaced by 

F ( K )  = CO(K) /P  W) = c , W / P  H ( K )  = C * ( K ) / P  fw = C 3 ( K ) / P .  

(29) 
One then arrives at the ‘compact’ expressions for the potentials V ,  similar to (A3)- 

(A6) of Appendiw A. Note that when the lattice constant cis large (i.e. when the inter- 
cell interaction is weak),f(K) given by (8) tends to 1, and one recovers the expressions 
(Al) and (A2) of the isolated unit cell model. These potentials can also be given in their 
‘standard form’ similar to (A7). The ‘standard form’ (Al) has, however, to be modified 
since the mode index K now has L continua of values ranging from 0 to n giving rise to 
L plasmon bands, i.e. (A7) is modified to 

where w ~ ( K ’ )  and & ( K ‘ )  can be expressed in terms of c,(K’), given in Appendix B, and 
where the first term, equal to one, comes from 

As shown in figure 2, K = 1 in (30) corresponds to the pseudo-optical plasmon mode 
which has the dispersion relation of the bulk plasmon at the high energy limit K ’  = 0 and 
it gives an acoustic plasmon mode at the other limit K‘ = n. For other values of K ,  we 
have very narrow acoustic plasmon bands as indicated in figure 2. Finally, let us note 
that for L = 1 the above approximate method is in fact exact (and in agreement with 
(14)-(lfj)), since there is no inter-layer distance a to cancel. For L = 2, the validity of 
the approximate method can be checked against the exact calculation performed in 
section 3 4 e e  (23) and (24). In most applications the difference between the results 
yielded by both methods will be found to be quite negligible (see our following paper). 
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Figure 2. Representation of the plasmon bands con- 
tributing to the effective interaction between the 
charge carriers. The upper bandis the pseudo-optical 
band which has the proper optical mode at the upper 
limit and the acoustic mode at the lower limit. The 
other bands correspond to the L - 1 narrow acoustic 
hands discussed in the text. For completeness the 
low frequency particle-hole continuum isalsoshown. 
The brokencurvegivestheplasmon mode forasingle 
ID electron gas. 

5. Summary 

In this paper we have calculated the effective interaction between two charge carriers 
located in the same layer of an infinite superlattice containing up to four metallic layers 
(ZDEGS) per unit cell. The calculation is based on the plasmon exchange model of the 
RPA. Exact analytic expressions for the effective interactions have been obtained for the 
infinite periodic systems containing one and two metallic layers per unit cell. This 
calculation is then extended to obtain approximate analyticexpressions for thiseffective 
interaction for L = 1,2,3 and 4 layers per cell. The interaction is found to be mediated 
by one pseudo-optical plasmon band and L - 1 acoustic bands. The pseudo-optical 
plasmon band is found to have an optical value (w =constant) equivalent to the bulk 
plasmon mode in one limit and in the other limit it corresponds to the upper limit of the 
acoustic plasmons. The other L - 1 narrow acoustic plasmon bands correspond to pure 
acoustic modes for small values of q. The results derived in this paper should have direct 
relevance to the many-body properties of the various types of superlattices identified in 
recent years, including the high-T, superconductors [14]. 
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Appendix A 

Here we present the effective interaction for the case of an isolated unit cell containing 
L ZDEG layers with L = 1 ,2 ,3  and 4. This corresponds to a model where only the intra- 
cell interactions are considered. For L = 1 and 2, the calculations are similar to those of 
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section 3, except that they are simpler since all subscripts * can be dropped. Indeed one 
has 

F =  116 and G = Y I P  (AI) 
with y = exp( -aq). The extension to the systems with L = 3 and 4 is rather straight- 
forward and the results will involve 

H = PIP and K = Y'/P (A.2) 

VLGL = uoP/(P - 1) (-43) 

V Z k  ('44) 

The results can be expressed in the form of the following 'compact'expressions [I31 

= (UOP/2)[(1+ Y ) / ( P  - 1 -U) + (1 - v) / (P  - 1 + r)l 

V3&> 

V , ( q , w )  = (00P/2){B(P - 1 - Y ) / [ ( P  - 1)2  - Y U +  Y 2 ) W  - 1) - Y 2 ( 1  + 2Y)l 

V,m(q,@) = ( ~ O P / ~ { ( ~ + Y ) ( B - ~ + Y ~ ) / [ ( P - ~ ) ~ - Y ( ~ + Y ' ) ( B - ~ ) - Y ~ ( ~ + ~ Y ) I  

= uoP(P - 1 + Y W ( P  - 1 ) Z  - YZ(P - 1) -2YI 

+ idem(y+- y ) }  ( A W  

+ idem(y+ - y)}. (A661 

Note that these results are given in terms of only two parameters and y .  For L = 3 
and 4, the potentials in the side and middle layers are specified by a second subscript (s 
and m, respectively). 

A series of quick checks can be made regarding the validity of these expressions. 
The number of modes, given by the number of poles, is equal to L. The poles of V3, and 
V,, are identical, as well as those of V ,  and Vdm. For y+ 0 ,  the distance between the 
layers become infinity and one obtains V ,  = V I  = U,#/@? - 1) = uo/(l + uon) which is 
the potential for an isolated layer. For y+ 1, the various layersof the unit cell collapse 
into a single layer and we have V ,  = ooP/(/3 - L )  = uo/(l + Luon) which is again the 
potential for a single layer, with the electron density getting multiplied by L. 

A last point to note is that for small q (i.e. for y+ l), one pole tends to 1 and the 
other poles tend to be proportional to 1 - y = aq. This implies that one pole corresponds 
to a planar plasmon mode with the pseudo-optical dispersion relation w = q'I2 and the 
others represent (L - 1) acoustic plasmon modes with w = q. 

The potentials V L  given by (A3)-(A6) can also be written in the 'standard form' as 
L 

VL n i x  -=1+E-- 
0 0  r=1 P - P K  

where the w, and P, can be expressed in terms of c, = ;Y = exp( -noq) ,  and they are 
given in Appendix B. 

Appendix B 

Remembering that the IV#) and B,(k') appearing in (30) can be expressed in terms of 
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the c. given by (28), i.e. by 
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C , ( K ' )  = y" - 1 +f(K') 

we now give the expressions for w, and p,. 
For VI, one has 

P I  = C O  w ,  =ca.  

P I  =CO + C l  

W I  = P : P  

For V 2 ,  one has 

p2 = CO - C ]  

and 

w2 = p:/2. 

For L = 3 and 4, we have to distinguish between the side (s) and the middle (m) layers. 
For V,,, one has 

PI  = c o + ( c 2 + r ) / 2  P 2 = c o + ( c 2 - r ) / 2  B 3 = c o - c 2  

with 

r = (8c: + c:)'" 

and 

wr = P U l  -co)/2r W B =  - P W 2  wk = 8:/2 

For V3,,,, the Pxs are the same as for V,, and one has 

W1m =P:(PI  -co-c2,/r w2, = -P:(PZ -cn  - c2 ) / r  w3$ = 0. 

For V,,, one has 

PI = c o + ( c l  +c3  + r + ) / 2  82 = c o + ( c l  +c3  - r t ) / 2  

P 3  = c o - ( c I + c 3 - r - ) / 2  P 4  = c ~ - ( c l + c 3 + r ~ ) / 2  

with 

r z  = i [ ( c l  -c3)*  +4(c l  -C c , ) ~ ] ~ ' ~  

w13 = P W 1  -co-c1)/2r+ 

~3~ = /3:(P3-co+cl) /2r-  

and 

wzr = -P$(P2 -cu-c1)/2r+ 

w4$ = - P & S P - c o + c , ) / 2 r -  
For V,,, the !3$ are the same as for V,, and one has 

w l m  = P?WI - c o - c J ) / ~ ~ ~  

w,,,, = P:(P3-cO+c3) /2r-  

~ 2 m  = -P%f%-co-c3)/2r+ 

wlm = -P?,(p4-cu+c3)/2r- .  

From these expressions it can be shown that 
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giving 

Using (16) one has 

In fact, these expressions are the sum rules due to the analytic properties of the RPA 
potentials, namely V,(q, w) tends to zero for o + 0, here within the plasmon region of 
the (q, w) plane where (2mw > q 2  + 2kf l ) .  

Other useful expressions are 

for V ,  

c; + c: for V 2  

c; + c: + c:. for V;,  
c; + 2c: for V;m 

z r w x  = 

c; + c: + c: + c: for V4$ 

for Vdm. I c; + 2: + c: 

These comparatively simple expressions can be calculated directly from the above 
detailed expressions of P. and w,. 

Note that for L = 3 and L = 4 we have to take the average over the side (5) and 
middle (m) layers, since the layers are always assumed to interact inside the unit cell. 
For L = 3 one has 

z=-z+;z 2 

x 3 X(S) u(m) 

and for L = 4 one has 

We will thus write 

w, = c; + (4/3)c: + (2/3)c$ 
I 

and 
w, = c$ + (3/2)c: + C: + (1/2)c$ 

R 

for L = 3 and L = 4, respectively 
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